Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Xian-Ming Zhang

School of Chemistry and Materials Science,
Shanxi Normal University, Linfen 041004,
People's Republic of China

Correspondence e-mail:
zhangxm@dns.sxtu.edu.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.041$
$w R$ factor $=0.114$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## Hexakis(1-oxido-1H-benzotriazol-3-ium- $\kappa$ ) iron(III) tris(perchlorate) acetonitrile disolvate

In the title mononuclear complex, $\left[\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{3}$.$2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$, the $\mathrm{Fe}^{\mathrm{III}}$ ion shows a close-to-ideal octahedral geometry coordinated by six O atoms from six 1-hydroxybenzotriazole ligands. The ligand benzotriazole exists as a zwitterion.

## Comment

1-Hydroxybenzotriazole with a substituted donor group on the azole ring has recently been used to synthesize polymeric and polynuclear coordination complexes (Tangoulis et al., 2000; Diamantopoulou, Perlepes et al., 2002; Papaefstathiou et al., 2002; Diamantopoulou, Raptopoulou et al., 2002). There are three potential donor atoms in 1-hydroxybenzotriazole, resulting in coordination flexibility. 1-Hydroxybenzotriazole exists in a deprotonated form in reported complexes, coordinated to the metal atoms in a $\mu_{2^{-}}, \mu_{3^{-}}$and/or $\mu_{4}$-fashion, as shown in the scheme.

(I)



C


D


E

In this paper, we report a new complex, (I), which crystallizes in the hexagonal space group $P 6_{3} / m$. The $\mathrm{Fe}^{\mathrm{III}}$ ion shows close-to-ideal octahedral geommetry, coordinated by six O atoms from six 1-hydroxybenzotriazole ligands. As required by the crystallographic symmetry of the Fe site, all six $\mathrm{Fe}-\mathrm{O}$

Received 9 May 2005 Accepted 12 August 2005 Online 17 August 2005


Figure 1
The coordination environment of (I), with displacement ellipsoids drawn at the $50 \%$ probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (A) $-x,-y,-z ;$ (B) $x-y, x,-z$; (C) $-x+y,-x, z ;$ (D) $y,-x+y,-z ;(\mathrm{E})-y, x-y, z ;(\mathrm{F}) x, y,-z+1 / 2$.]
bond lengths are identical at 2.0095 (14) $\AA$. The three trans-$\mathrm{O}-\mathrm{Fe}-\mathrm{O}$ angles are $180^{\circ}$. However, the cis- $\mathrm{O}-\mathrm{Fe}-\mathrm{O}$ angles deviate from ideal octahedral values [87.30 (6) and $\left.92.70(6)^{\circ}\right]$. The ligand 1-hydroxybenzotriazole exists as a zwitterion as a result of tautomerism. Atom N3 forms hydrogen bonds with perchlorate atoms O 2 and O 4 , with $\mathrm{N} \cdots \mathrm{O}$ distances of 2.8912 (19) and 3.139 (3) Å, respectively.

## Experimental

Iron(III) perchlorate ( $0.077 \mathrm{~g}, 0.5 \mathrm{mmol}$ ), 1-hydroxybenzotriazole ( $0.135 \mathrm{~g}, 1 \mathrm{mmol}$ ) and acetonitrile ( 7 ml ) were stirred in a beaker at 313 K for 30 min . The resulting clear solution was filtered and allowed to stand for 3 d . The resulting colorless regular hexagonal block-shaped crystals were recovered by filtration in $62 \%$ yield. Analysis found: C 38.46, H 2.96, N $22.37 \%$; calculated for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{Cl}_{3} \mathrm{FeN}_{20} \mathrm{O}_{18}$ : C 38.53, H 2.91, N $22.46 \%$.

## Crystal data

```
[Fe(C66H5N N
Mr}=1247.0
Hexagonal, \(P 6_{3} / m\)
\(a=10.2197\) (4) \(\AA\)
\(c=28.3118\) (14) \(\AA\)
\(V=2560.79(19) \AA^{3}\)
\(Z=2\)
\(D_{x}=1.617 \mathrm{Mg} \mathrm{m}^{-3}\)
```


## Data collection

Bruker APEX area-dector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.845, T_{\text {max }}=0.908$
2319 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.114$
$S=1.14$
2319 reflections
137 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0334 P)^{2}\right. \\
& \quad+5.4288 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.18 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.75 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\AA^{\circ},{ }^{\circ}$ ).

| $\mathrm{Fe} 1-\mathrm{O} 1$ | $2.0095(14)$ |  |  |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| $\mathrm{O1}^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 1$ | $180.00(10)$ | $\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 1^{\mathrm{ii}}$ | $87.30(6)$ |
| $\mathrm{O}^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 1^{\mathrm{ii}}$ | $92.70(6)$ |  |  |

Symmetry code: (i) $-x,-y,-z$; (ii) $x-y, x,-z$.

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{O} 2$ | $0.92(3)$ | $1.97(3)$ | $2.8912(19)$ | $171(3)$ |
| $\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{O} 4$ | $0.92(3)$ | $2.57(3)$ | $3.139(3)$ | $121(2)$ |

The H atoms of the benzene rings were placed at calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ and refined in the riding model, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2$ times the $U_{\text {eq }}$ (parent atom). The H atoms of acetronitrile and atom H3B (attached to N3) were located in a Fourier map and refined isotropically. The highest peak was located $0.94 \AA$ from atom Cl 1 .

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

## References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Diamantopoulou, E., Perlepes, S. P., Raptis, D. \& Raptopoulou, C. P. (2002). Transition Met. Chem. 27, 377-383.
Diamantopoulou, E., Raptopoulou, C. P., Terzis, A., Tangoulis, V. \& Perlepes, S. P. (2002). Polyhedron, 21, 2117-2126.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Papaefstathiou, G. S., Vicente, R., Raptopoulou, C. P., Terzis, A., Escuer, A. \& Perlepes, S. P. (2002). Eur. J. Inorg. Chem. 2488-2493.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tangoulis, V., Raptopoulou, C. P., Psycharis, V., Terzis, A., Skorda, K., Perlepes, S. P., Cador, O., Kahn, O. \& Bakalbassis, E. G. (2000). Inorg. Chem. 39, 2522-2529.

